STTAL

STTAL
LOGO

Kamis, 18 Januari 2018

tugas A

Data mahasiswa
Nrp      : 19234/P
Nama : Rakhmad Susilo
Prodi   : S1 teknik Elektro

Tugas dan latihan Minggu ke 10, Mata Kuliah Bahasa Pemrograman

1. Apa manfaat  Algoritma?
Jawab:

Algoritma adalah urutan atau langkah-langkah untuk penghitungan dan menyelesaikan masalah yang ditulis secara berurutan.Algoritma memiliki manfaat untuk mempermudah dari instruksi-instruksi atau langkah untuk menyelesaikan masalah. Mempermudah pada saat pembuatan program. 


2. Berdasarkan tugas UTS yang anda buat, tuliskan algoritmanya. Sertakan juga gambaran programnya?
Jawab:

Algoritma Perhitungan Bahan bakar Kapal:
1. Masukan jenis kapal
2. pilih status kapal operasi atau dipangkalan
3. Masukan berapa Hari akan layar( berada dilaut)
4. Masukan berapa Hari akan sandar ( didarat)
5. Hitung
6. dapat diketahui perkiraan penggunaan bahan bakar selama pelayaran






                                                Gambar 1. Program perhitungan bahan bakar








                                        Gambar 2. Flowchart program penggunaan BBM


3. Menurut anda algoritma yang anda buat benar, jelaskan alasannya (minimal 2 Hal)
Jawab:
Algoritma penggunaan bahan bakar untuk tugas UTS benar karena dapat mendapatkan hasil yang diinginkan oleh pembuat program. Jika suatu algoritma dapat menghasilkan data yang dibutuhkan oleh pembuat program maka dapat dikatakan bahwa algoritma tersebut benar.
Algoritma dikatan benar jika ditulis secara berurutan. Jika algoritma ditulis tidak secara berurutan maka algoritma tersebut bisa dikatakan salah walaupun dapat mendapatkan hasil yang kita inginkan

Algoritma dikatan salah jika ditulis secara tidak berurutan dan tidak mendapatkan hasil yang diinginkan. Ditulis secara berurutan namun tidak mendapatkan hasil yang diingan juga dapat dikatakan tidak benar atau salah. Ditulis secara acak walaupun mendapatkan hasil juga tidak benar. Jadi penulisan algoritma harus secara berurutan dan dapat memperoleh hasil yang diinginkan. 





Sabtu, 02 Desember 2017

tugas-9

Penulis
J. Kriauciunas, R. Rinkeviciene, A. Baskys
Judul 
Self-Tuning Speed Controller of the Induction Motor Drive
Sumber
IEEE
Resume
Induction motors are characterized by non-linear, complex and time-varying dynamics therefore conventional controllers cannot ensure speed step response specifications in all speed range. This paper presents hybrid fuzzy and proportional-integral-derivative (PID) controller to improve speed control of the induction motor. Proposed Fuzzy logic controller is used to tune each gain of PID controller separately. The simulation results are presented and discussed in the study. Simulink based model of induction motor drive is used for analysis of developed electromagnetic torque and speed response. Motor performance is thereby evaluated for speed control.
The conventional PID controller is linear and can operate properly only in a certain point of all operating range. Developed and investigated scalar controlled sensorless induction motor drive simulation model with composite PID and fuzzy logic controllers. Such synthesis allows to control non-linear system and to tune gains of PID controller according to changing nonlinearity. Paper deals with simulation results of rotor speed and electromagnetic torque produced by motor are presented and discussed.

Usually scalar control method, which is also known as Volts -per-Hertz  control (V /Hz ), is used to control an induction motors.  If the ratio V /Hz  remains constant with the change of frequency, then the maximum torque in speed-torque steady state characteristic remains constant. In actual implementation, the ratio between the magnitude and frequency of the stator voltage is usually based on the rated values of these variables, or motor ratings. However, when the frequency and also the voltage are low, the voltage drop across the stator resistance cannot be neglected and must be compensated. At frequencies higher than the rated value, the constant V /Hz  ratio should not be applied to avoid insulation break-down, because the stator velocity should not to exceed its rated value.


Conventional PID operates only at one point of all speed range its gains should be recalculated. Elaborated speed control system simulation model with auto tuning fuzzy PID controller operates in all speed range from 1 rad /s  up to synchronous speed 314 rad /s  with steady state error ±0.05 %– ±5 %. Parameters of PID controller are tuned automatically by fuzzy controller according to speed error e  and change of the error de . After the motor is loaded the speed drops down, but it took less than 5 s  to adjust it to reference signal with smaller than 1 % error.

Rabu, 29 November 2017

Photovoltaic Technology


PENGARANG : A.Shah,  P.Torres, R.Tscharner, N.Wyrsch, H.Keppner
PENERBIT  : IEEE
JUDUL         : Photovoltaic Technology: The Case  for Thin-Film Solar  Cells



Photovoltaic Technology: The Case  for Thin-Film Solar  Cells



The photovoltaic (PV) effect was discovered in 1839 by Edmond Becquerel. For a long time  it  remained  a  scientific  phenomenon with few device applications. After the intro- duction of silicon as the prime semiconductor material in the late 1950s, silicon PV diodes became available. They were soon indispens- able for supplying electrical power to tele- communications equipment in remote loca- tions and to satellites. Then, in the 1970s, a major reorientation took place in the general perception of the energy supply problem: The oil crisis of 1973 led to a general public awareness of the limitation of fossil fuels; many governments (including those of the United States, Japan, and several European countries) started, a few years later, ambitious programs in the search for alternative energy sources, including PV solar energy. This trend was reinforced
The advantages  and  limitations  of pho- tovoltaic  solar modules for energy gene- ration  are reviewed with their operation principles and  physical efficiency limits. Although  the  main  materials   currently used  or investigated  and the  associated fabrication technologies are individually described, emphasis is on silicon-based solar  cells. Wafer-based  crystalline  sili- con solar modules dominate  in terms  of production,  but  amorphous  silicon solar cells have the potential  to undercut costs owing, for example, to the roll-to-roll production possibilities for modules. Recent develop-ments  suggest that  thin- film crystalline  silicon (especially micro- crystalline  silicon) is becoming  a  prime candidate for future photovoltaics.

Charge separation. In the second step of the energy conversion process, the photoge- nerated  electron-hole  pairs  are  separated, with electrons drifting to one of the elec- trodes and holes drifting to the other elec- trode, because of the internal electric field created by the diode structure of the solar cell. The dark (nonilluminated) characteris- tics of the diode and the photogenerated current  can in principle, be linearly super
Crystalline silicon solar cells: The trend to- ward thin-film crystalline silicon. As .80% of solar cells produced at present are crystal- line silicon solar cells (6 ) and the remaining 20% are mostly amorphous silicon solar cells (which are mainly restricted to consumer electronics), almost all PV systems with .1- kW peak power rating (kWp ) are fitted with crystalline  silicon  solar  cells.  These  solar cells were until very recently exclusively based on the use of silicon wafers. Alterna- tive structures, such as silicon ribbons, are just being introduced into the market.


figur 1. (A) Electrical equivalencircuit of a PV solar cell (61). The diode is a dark (nonillumi- nated) p-n or p–i-n diode. Additional recombina- tion (particularly in the i-type layer of p–i-n di- odes) is represented by the current source, which counteracts  the photogenerated current. Rs  and Rsh  are resistors that  represent  electrical losses (for example, Rs losses due to contact resistance and Rslosses due to pinholes through the solar cell). (B) Typical I-V characteristics of a solar cell,with the  three  characteristiparameters:  short- circuit current Isc, open-circuit voltage Voc, and fill factor FF 5 Pmax /(Voc  3 Isc ); Pmax  is the electrical power  delivered bthe  cell at  the  maximum power point.


Strength:    pembangkit listrik menggunakan ftovoltaic merupakan energi alternatif yang sangat baik apalagi digunakan diindonesia yang sangat kaya sinar matahari sepanjang tahun tanpa adanya musim dingin dan musim lain yang minim sinar matahari.


Weakness: biaya pemasangan pertama yang mahal sehingga orang indonesia kurang tertarik dengan sumberdaya alternatif ini.

Sabtu, 18 November 2017

Tugas resume paper ke-7

JUDUL:
 Real-Time Fieldbus Communications Using Profibus Networks
PENGARANG:
Eduardo Tovar (member)
PENERBIT:
 IEEE
RESUME:
This paper provides a comprehensive study on how to use Profibus fieldbus networks to support real-time industrial communications, that is, on how to ensure the transmission of real-time messages within a maximum bound time. Profibus is based on a simplified Timed Token (TT) protocol, which is a well-proved solution for real-time communication systems. We propose two approaches to guarantee the real-time behaviour of the Profibus protocol: an Unconstrained Low Priority Traffic profile and a Constrained Low Priority Traffic profile. The proposed analysis will show that the first profile is a suitable approach for more responsive systems (tighter deadlines), whilst the second allows for increased non-real-time traffic throughput.
Within industrial communication systems, fieldbus networks are specially intended for the interconnection of process controllers, sensors and actuators, at the lower levels of the factory automation hierarchy. These hierarchical levels have dissimilar message flows, in terms of required response times, amount of information to be transferred, required reliability and message rates (how frequently messages must be transferred).






Kita mempertimbangkan membatasi waktu atau deadlines as the maximum allowable time span between a message transfer request and its transmission on the bus. In fact, the total message cycle delay results from multiple factors, such as the access and queuing delays, the transmission time (frame length / transmission rate) and the protocol processing time. As we are dealing with real-time communication across a shared transmission medium, we focus our analysis on the access delay and queuing delay factors.
The Profibus  MAC  mechanism  is  based  on  a  token  passing  procedure  used  by  master stations to grant the bus access to each one of them, and a master-slave procedure used by master stations to communicate with slave stations. The Profibus token passing procedure uses a simplified version of the Timed Token protocol. An important Profibus concept is the message cycle. A message cycle consists of a master's action frame (request or send/request frame) and the associated responder's acknowledgement or response frame. User data may be transmitted in the action frame or in the response frame.
One of the main functions of the Profibus MAC is the control of the token cycle time. After receiving the token, the measurement of the token rotation time begins. This measurement expires at the next token arrival and results in the real token rotation time (TRR). A target token rotation time (TTR) must be defined in a Profibus  network.  The  value  of  this  parameter  is common to all masters, and is used as follows.
Profibus supports four data transmission services: Send Data with No acknowledge (SDN); Send Data with Acknowledge (SDA); Request Data with Reply (RDR) and Send and Request Data (SRD). The SDN is an unacknowledged service used for broadcasts from a master station to all other stations on the bus. An important characteristic of these services is that they are immediately answered, with a response or an acknowledgement. This feature, also called "immediate-response", is particularly important for the real-time bus operation.
Compared to the Timed Token protocol [9], the main difference of the  Profibus token passing consists in the absence of synchronous bandwidth allocation (Hi). In the Timed Token protocol this is a relevant station parameter, since it specifies the amount of time a station has to transfer its real-time traffic. In Profibus, if a master receives a late token (TRR  was greater than TTR) only one high priority message may be transmitted.
As a consequence, in Profibus, low priority traffic may drastically affect the high priority traffic capabilities. In fact, if the low priority traffic is not constrained when a master receives an early token (TRR smaller than TTR), the master may use all the available time (TTH = TTR TRR) to process low priority traffic, delaying the token rotation. In this case, the subsequent masters may be limited to only one high priority message transmission when holding the token. Ilustrasi situasi tersebut terdapat pada gambar berikut.




    The major contribution of this paper is to prove that is possible to guarantee real-time communication behaviour using Profibus fieldbus networks, thus allowing its use to support distributed computer-controlled systems.
In order to achieve real-time communication behaviour using Profibus networks, we propose two distinct approaches: an Unconstrained Low Priority Traffic profile and a Constrained Low Priority Traffic profile. For both profiles we derive deadline constraints, which, if verified, guarantee real-time messages deadlines.

STRENGTH: Jika sebuah master telat  menerima sebuah token  (TRR  lebih besar dari TTR) hanya satu high priority message yang dapat dikirim.

WEAKNESS:  Jika master menerima token lebih awal (TRR lebih kecil TTR), master dapat menggunakan semua waktu yang tersedia (TTH = TTR TRR) untuk memproses  low priority traffic. masters tetap dibatasi hanya mengirim satu high priority message ketika holding the token

















                                                                 







Rabu, 15 November 2017

tugas Flowcart

Pendahuluan
Flowchart merupakan sebuah diagram dengan simbol-simbol grafis yang menyatakan proses algoritma  yang menampilkan langkah-langkah yang disimbolkan dalam bentuk yang sudah disepakati dan  dengan menghubungkan masing masing langkah tersebut menggunakan tanda panah. Diagram ini bisa memberi solusi selangkah demi selangkah untuk penyelesaian masalah yang ada di dalam proses atau algoritma tersebut.[1] 
Bagan alir program  terdiri dari dua macam, yaitu bagan alir logika program (program logic flowchart) dan bagan alir program komputer terinci (detailed computer program flowchart). Bagan alir logika program digunakan untuk menggambarkan tiap-tiap langkah di dalam program komputer secara logika. Bagan alir logika program ini dipersiapkan oleh analis sistem.
Salam Super {19234/P, Rakhmad Susilo}
Dosen : Titik Lusiani, M.Kom, OCP