STTAL

STTAL
LOGO

Rabu, 29 November 2017

Photovoltaic Technology


PENGARANG : A.Shah,  P.Torres, R.Tscharner, N.Wyrsch, H.Keppner
PENERBIT  : IEEE
JUDUL         : Photovoltaic Technology: The Case  for Thin-Film Solar  Cells



Photovoltaic Technology: The Case  for Thin-Film Solar  Cells



The photovoltaic (PV) effect was discovered in 1839 by Edmond Becquerel. For a long time  it  remained  a  scientific  phenomenon with few device applications. After the intro- duction of silicon as the prime semiconductor material in the late 1950s, silicon PV diodes became available. They were soon indispens- able for supplying electrical power to tele- communications equipment in remote loca- tions and to satellites. Then, in the 1970s, a major reorientation took place in the general perception of the energy supply problem: The oil crisis of 1973 led to a general public awareness of the limitation of fossil fuels; many governments (including those of the United States, Japan, and several European countries) started, a few years later, ambitious programs in the search for alternative energy sources, including PV solar energy. This trend was reinforced
The advantages  and  limitations  of pho- tovoltaic  solar modules for energy gene- ration  are reviewed with their operation principles and  physical efficiency limits. Although  the  main  materials   currently used  or investigated  and the  associated fabrication technologies are individually described, emphasis is on silicon-based solar  cells. Wafer-based  crystalline  sili- con solar modules dominate  in terms  of production,  but  amorphous  silicon solar cells have the potential  to undercut costs owing, for example, to the roll-to-roll production possibilities for modules. Recent develop-ments  suggest that  thin- film crystalline  silicon (especially micro- crystalline  silicon) is becoming  a  prime candidate for future photovoltaics.

Charge separation. In the second step of the energy conversion process, the photoge- nerated  electron-hole  pairs  are  separated, with electrons drifting to one of the elec- trodes and holes drifting to the other elec- trode, because of the internal electric field created by the diode structure of the solar cell. The dark (nonilluminated) characteris- tics of the diode and the photogenerated current  can in principle, be linearly super
Crystalline silicon solar cells: The trend to- ward thin-film crystalline silicon. As .80% of solar cells produced at present are crystal- line silicon solar cells (6 ) and the remaining 20% are mostly amorphous silicon solar cells (which are mainly restricted to consumer electronics), almost all PV systems with .1- kW peak power rating (kWp ) are fitted with crystalline  silicon  solar  cells.  These  solar cells were until very recently exclusively based on the use of silicon wafers. Alterna- tive structures, such as silicon ribbons, are just being introduced into the market.


figur 1. (A) Electrical equivalencircuit of a PV solar cell (61). The diode is a dark (nonillumi- nated) p-n or p–i-n diode. Additional recombina- tion (particularly in the i-type layer of p–i-n di- odes) is represented by the current source, which counteracts  the photogenerated current. Rs  and Rsh  are resistors that  represent  electrical losses (for example, Rs losses due to contact resistance and Rslosses due to pinholes through the solar cell). (B) Typical I-V characteristics of a solar cell,with the  three  characteristiparameters:  short- circuit current Isc, open-circuit voltage Voc, and fill factor FF 5 Pmax /(Voc  3 Isc ); Pmax  is the electrical power  delivered bthe  cell at  the  maximum power point.


Strength:    pembangkit listrik menggunakan ftovoltaic merupakan energi alternatif yang sangat baik apalagi digunakan diindonesia yang sangat kaya sinar matahari sepanjang tahun tanpa adanya musim dingin dan musim lain yang minim sinar matahari.


Weakness: biaya pemasangan pertama yang mahal sehingga orang indonesia kurang tertarik dengan sumberdaya alternatif ini.

Sabtu, 18 November 2017

Tugas resume paper ke-7

JUDUL:
 Real-Time Fieldbus Communications Using Profibus Networks
PENGARANG:
Eduardo Tovar (member)
PENERBIT:
 IEEE
RESUME:
This paper provides a comprehensive study on how to use Profibus fieldbus networks to support real-time industrial communications, that is, on how to ensure the transmission of real-time messages within a maximum bound time. Profibus is based on a simplified Timed Token (TT) protocol, which is a well-proved solution for real-time communication systems. We propose two approaches to guarantee the real-time behaviour of the Profibus protocol: an Unconstrained Low Priority Traffic profile and a Constrained Low Priority Traffic profile. The proposed analysis will show that the first profile is a suitable approach for more responsive systems (tighter deadlines), whilst the second allows for increased non-real-time traffic throughput.
Within industrial communication systems, fieldbus networks are specially intended for the interconnection of process controllers, sensors and actuators, at the lower levels of the factory automation hierarchy. These hierarchical levels have dissimilar message flows, in terms of required response times, amount of information to be transferred, required reliability and message rates (how frequently messages must be transferred).






Kita mempertimbangkan membatasi waktu atau deadlines as the maximum allowable time span between a message transfer request and its transmission on the bus. In fact, the total message cycle delay results from multiple factors, such as the access and queuing delays, the transmission time (frame length / transmission rate) and the protocol processing time. As we are dealing with real-time communication across a shared transmission medium, we focus our analysis on the access delay and queuing delay factors.
The Profibus  MAC  mechanism  is  based  on  a  token  passing  procedure  used  by  master stations to grant the bus access to each one of them, and a master-slave procedure used by master stations to communicate with slave stations. The Profibus token passing procedure uses a simplified version of the Timed Token protocol. An important Profibus concept is the message cycle. A message cycle consists of a master's action frame (request or send/request frame) and the associated responder's acknowledgement or response frame. User data may be transmitted in the action frame or in the response frame.
One of the main functions of the Profibus MAC is the control of the token cycle time. After receiving the token, the measurement of the token rotation time begins. This measurement expires at the next token arrival and results in the real token rotation time (TRR). A target token rotation time (TTR) must be defined in a Profibus  network.  The  value  of  this  parameter  is common to all masters, and is used as follows.
Profibus supports four data transmission services: Send Data with No acknowledge (SDN); Send Data with Acknowledge (SDA); Request Data with Reply (RDR) and Send and Request Data (SRD). The SDN is an unacknowledged service used for broadcasts from a master station to all other stations on the bus. An important characteristic of these services is that they are immediately answered, with a response or an acknowledgement. This feature, also called "immediate-response", is particularly important for the real-time bus operation.
Compared to the Timed Token protocol [9], the main difference of the  Profibus token passing consists in the absence of synchronous bandwidth allocation (Hi). In the Timed Token protocol this is a relevant station parameter, since it specifies the amount of time a station has to transfer its real-time traffic. In Profibus, if a master receives a late token (TRR  was greater than TTR) only one high priority message may be transmitted.
As a consequence, in Profibus, low priority traffic may drastically affect the high priority traffic capabilities. In fact, if the low priority traffic is not constrained when a master receives an early token (TRR smaller than TTR), the master may use all the available time (TTH = TTR TRR) to process low priority traffic, delaying the token rotation. In this case, the subsequent masters may be limited to only one high priority message transmission when holding the token. Ilustrasi situasi tersebut terdapat pada gambar berikut.




    The major contribution of this paper is to prove that is possible to guarantee real-time communication behaviour using Profibus fieldbus networks, thus allowing its use to support distributed computer-controlled systems.
In order to achieve real-time communication behaviour using Profibus networks, we propose two distinct approaches: an Unconstrained Low Priority Traffic profile and a Constrained Low Priority Traffic profile. For both profiles we derive deadline constraints, which, if verified, guarantee real-time messages deadlines.

STRENGTH: Jika sebuah master telat  menerima sebuah token  (TRR  lebih besar dari TTR) hanya satu high priority message yang dapat dikirim.

WEAKNESS:  Jika master menerima token lebih awal (TRR lebih kecil TTR), master dapat menggunakan semua waktu yang tersedia (TTH = TTR TRR) untuk memproses  low priority traffic. masters tetap dibatasi hanya mengirim satu high priority message ketika holding the token

















                                                                 







Rabu, 15 November 2017

tugas Flowcart

Pendahuluan
Flowchart merupakan sebuah diagram dengan simbol-simbol grafis yang menyatakan proses algoritma  yang menampilkan langkah-langkah yang disimbolkan dalam bentuk yang sudah disepakati dan  dengan menghubungkan masing masing langkah tersebut menggunakan tanda panah. Diagram ini bisa memberi solusi selangkah demi selangkah untuk penyelesaian masalah yang ada di dalam proses atau algoritma tersebut.[1] 
Bagan alir program  terdiri dari dua macam, yaitu bagan alir logika program (program logic flowchart) dan bagan alir program komputer terinci (detailed computer program flowchart). Bagan alir logika program digunakan untuk menggambarkan tiap-tiap langkah di dalam program komputer secara logika. Bagan alir logika program ini dipersiapkan oleh analis sistem.
Salam Super {19234/P, Rakhmad Susilo}
Dosen : Titik Lusiani, M.Kom, OCP

Minggu, 12 November 2017

INTERPOLASI KONVOLUSI KUBUS UNTUK PENGOLAHAN DATA DIGITAL

judul:
INTERPOLASI KONVOLUSI KUBUS UNTUK PENGOLAHAN DATA DIGITAL
PENGRANG:
ROBERT G.KEYS
PENERBIT:
IEEE
RESUME:
Cubic convolution interpolation adalah teknik baru untuk sampling data. Dia memiliki jumlah fitur yang dibutuhkan sehingga sangat berguna untuk image processing.  teknik ini dapat menunjukan efesiensi pada digital computer. Cubic convolution interpolation berfungsi coverage uniformly to function being interpolation sebagai penambahan sampling mendekati nol. Dengan appropriate boundary condition dan constraints pada interpolasi kernel, dapat ditunjukan bahwa akurasi bentuk dari metode cubic convolution antara linier interpolasi dan cubic splines.
Interpolasi adalah proses perkiraan  pada nilai tengah waktunya berkesinambungan atau terus menerus kemudian di sampling. Interpolsai digunakan dalam digital image processing  untuk membesarkan atau mengecilkan gambar dan untuk membetulkan spasial distortion. Algoritma yang didiskusikan dalam paper ini adalah versi modifikasi algoritma cubic convolution yang dikembangkan oleh Rifman dan bernstainobjek dari paper ini untuk mengarahkan modifikasi algoritma cubic convolation dan membandingkan dengan metode interpolasi lain. Dua aplikasi yang dilaksanakan dalam paper ini adalah analisi pertains terutama pada masalah satu dimensi; interpolasidua dimensi dapat diselesaikan dengan mudah menggunakan performing interpolasi satu dimensi pada masing-masing dimensinya.
A fundamental property of interpolation functions is they must coincide with the sampled data at interpolation nodes, or sample points. in other words, if f adalah fungi sample dan geek g adalah fungi corespondent interpolasi make g(x)=f(x) divan Xk adalah sebuah interpolation node. until persimmon space data, bank fungi interlopers yang data dilutes dari bent dibawah ini. 











Interpolasi kernel mengkonvert data discrete kedalam continous functions menggunakan operasi yang mirip untuk convolusi. 

One of basic assumtion used to derive the cubic convolution algorithm was that the sampled function  possessed a continuous third derivative. this assumption is not unreasonable for many practical problems. for example the sampled function is often assumed to be band limited. since band limited functions are infinitely differentiable, they easily meet the requirements for cubic convolution interpolation.

WEAKNESS:
- It also detects aliasing effect in the linier interpolation error image
- It is more complicated than the nearest - neighbor algorithm
- The computer time need cubic resampling image 0.29 min and neighbor 0.28 min so cubic need time more.

SRENGTH
- Lebih akurat dan paling akurat dari metode yang ada
- menghasilkan gambar yang bagus walaupun di perbesar lebih


Rabu, 01 November 2017

tugas Algoritma

Pendahuluan.
Algoritma merupakan sistem komputer memiliki brainware, hardware, dan software. Tanpa salah satu dari ketiga sistim tersebut, komputer tidak akan berguna. Kita akan lebih fokus pada softwarekomputer. Software terbangun atas susunan program (silahkan baca mengenai pengertian program) dan syntax (cara penulisan/pembuatan program). Untuk menyusun program atau  syntax, diperlukannya langkah-langkah yang sistematis dan logis untuk dapat menyelesaikan masalah atau tujuan dalam proses pembuatan suatu software. Maka,Algoritma berperan penting dalam penyusunan program atau syntax  tersebut.
Pengertian Algoritma adalah susunan yang logis dan sistematis untuk memecahkan suatu masalah atau untuk mencapai tujuan tertentu. Dalam dunia komputer, Algoritma sangat berperan penting dalam pembangunan suatu software. Dalam dunia sehari-hari, mungkin tanpa kita sadari Algoritma telah masuk dalam kehidupan kita.

Algoritma 1. Mengambil uang di ATM
1. Mulai
2. masukan kartu kedalam ATM
3. Masukan PIN
4. Jika pin yang dimasukan benar lanjut ke menu selanjutnya jika salah bisa di ulang maksmal 3x
5. Pilih menu pengambilan uang tunai
6. Pilih nilai uang yang akan diambil
7. Ambil uang
8. Ambil kartu ATM
9. Selesai

Algoritma 2. Apel Pagi
1. Peluit apel pagi
2. Baris sesuai kelas masing-masing
3. Pengambil apel memerintahkan cek anggota kelas
4. ketua kelas laporan kepada pengambil apel
5. Yel-yel TNI
6. Pembacaan doa dan pengarahan kaprodi
7. Selesai apel pagi